Packing and Covering Balls in Graphs Excluding a Minor
نویسندگان
چکیده
We prove that for every integer t ⩾ 1 there exists a constant ct such Kt-minor-free graph G, and set S of balls in the minimum size vertices G intersecting all is at most times maximum number vertex-disjoint S. This was conjectured by Chepoi, Estellon, Vaxès 2007 special case planar graphs having same radius.
منابع مشابه
Packing and Covering Dense Graphs
Let d be a positive integer. A graph G is called d-divisible if d divides the degree of each vertex of G. G is called nowhere d-divisible if no degree of a vertex of G is divisible by d. For a graph H, gcd(H) denotes the greatest common divisor of the degrees of the vertices of H. The H-packing number of G is the maximum number of pairwise edge disjoint copies of H in G. The H-covering number o...
متن کاملPacking and Covering Triangles in Planar Graphs
Tuza conjectured that if a simple graph G does not contain more than k pairwise edgedisjoint triangles, then there exists a set of at most 2k edges that meets all triangles in G. It has been shown that this conjecture is true for planar graphs and the bound is sharp. In this paper, we characterize the set of extremal planar graphs.
متن کاملPacking and covering δ-hyperbolic spaces by balls
We consider the problem of covering and packing subsets of δ-hyperbolic metric spaces and graphs by balls. These spaces, defined via a combinatorial Gromov condition, have recently become of interest in several domains of computer science. Specifically, given a subset S of a δhyperbolic graph G and a positive number R, let γ(S, R) be the minimum number of balls of radius R covering S. It is kno...
متن کاملPacking and covering with balls on Busemann surfaces
In this note we prove that for any compact subset S of a Busemann surface (S, d) (in particular, for any simple polygon with geodesic metric) and any positive number δ, the minimum number of closed balls of radius δ with centers at S and covering the set S is at most 19 times the maximum number of disjoint closed balls of radius δ centered at points of S: ν(S) ≤ ρ(S) ≤ 19ν(S), where ρ(S) and ν(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorica
سال: 2021
ISSN: ['0209-9683', '1439-6912']
DOI: https://doi.org/10.1007/s00493-020-4423-3